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Abstract—Jamming attacks pose severe risks to smart cities
in the 5G era and beyond, including economic losses and
safety threats. Identifying jamming-prone areas within a city is
essential for proactive planning and safeguarding the reliability
of wireless networks. This paper introduces a novel approach for
identifying jamming-prone areas in smart cities using ray-tracing
(RT) within a digital twin (DT) framework. The methodology
integrates Blender for scene creation, NVIDIA’s Sionna RT for
propagation modeling, and techniques for jamming identification
and severity analysis across various areas of the environment.
The results demonstrate the feasibility of this approach, illustrat-
ing how high-fidelity replication of real-world scenarios within
DTs can effectively identify jamming-prone areas in smart cities.
This work highlights the potential of the proposed framework
as a reliable and efficient alternative for jamming identification,
especially in contexts where privacy concerns or environmental
constraints limit the applicability of traditional methods.

Index Terms—Digital twin, Ray-tracing, Jamming Identifica-
tion.

I. INTRODUCTION

“Jamming-prone area identification” involves determining
geographic locations where wireless signals are particularly
susceptible to interference or jamming. This is often achieved
by analyzing signal strength variations, comparing data from
multiple receivers, and using sophisticated algorithms to pin-
point areas where jamming attacks are most likely to occur.
These attacks can create significant challenges, including
economic losses from operational downtime and potentially
life-threatening situations. The issue is particularly critical
in smart cities, where wireless communication serves as the
backbone for efficient productivity, enabling the seamless inte-
gration of technologies, services, and human-robot collabora-
tion. Hence, identifying areas vulnerable to signal interference
would allow for the implementation of proactive measures
to prevent disruptions and ensure the smooth operation of
critical systems, such as GPS navigation, IoT networks, and
autonomous vehicles [1].

Machine Learning (ML)-based Jamming Identification. In
recent years, ML techniques have gained significant traction
for jamming identification and detection due to their ability
to handle complex patterns and anomalies in wireless com-
munication systems. By analyzing features such as signal-to-
noise ratio (SNR), received signal strength indicator (RSSI),
spectral patterns, and packet delivery rates, ML techniques can
effectively identify jamming activities. In supervised learning,
models are trained on labeled data consisting of both normal
and abnormal spectrograms, enabling the algorithm to classify
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Fig. 1. Illustrates the impact of communication without and with
knowledge of a city’s jamming-prone areas. In (a), a mobile receiver’s
communication is interrupted because it operates without awareness
of areas susceptible to high levels of jamming. In (b), the receiver
leverages knowledge of jamming-prone areas to adjust its operations.
While some degradation may occur, the transmission remains sus-
tainable due to the strategic awareness of jamming-prone zones.
signals and detect jamming effectively [2]. When labeled data
is absent, unsupervised learning techniques, such as clustering
algorithms, are employed to identify patterns in the data
that may indicate jamming activities [3]. Additionally, deep
learning techniques, such as convolutional neural networks
(CNNSs) and recurrent neural networks (RNNs), along with re-
inforcement learning (RL), have been explored for their ability
to learn from dynamic environments and improve detection
over time [4]. The advancement of GPUs and computing
technologies has significantly accelerated the adoption of ML
approaches, enabling faster processing and improved detection
in complex scenarios.

Concerns with ML-based Jamming Identification. Accurate
ML-based jamming detection typically requires large labeled
datasets of both normal and abnormal spectrograms or records,
which can be resource-intensive and prone to security risks,
including adversarial attacks. Additionally, ML approaches
often lack integration of contextual information such as the
precise locations and number of active regular transmitters
within a network. This limitation can hinder the performance
of jamming detection systems, especially in dynamic and
complex environments like 5G and beyond [5], [6].

Digital Twin (DT)-based Jamming Identification. To over-
come previous challenges, researchers are increasingly lever-
aging DT technology for improved jamming identification
and detection in wireless networks [7], [8]. While previous
studies have focused on modeling the radio environment and
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utilizing DT for anomaly detection in wireless networks,
our work integrates both the radio environment and the
physical structure of the real world. This approach offers a
more comprehensive framework, which is critical for efficient
network planning and management. Essentially, a DT serves
as a virtual representation of the real world, used to predict
the behavior and outcomes of its physical counterpart. A
wireless DT generally consists of three components: a radio
model that represents the transmitter and receiver, a 3D scene
that replicates the real world, and a radio propagation engine
that simulates radio propagation for specified devices and
environments [9], [10]. DTs have emerged as a powerful tool
for capturing and analyzing environmental visuals along with
their corresponding radio characteristics [11], [12].

Our Contributions. Building on the progress made in DT
technology, we propose an innovative framework that accu-
rately identify jamming-prone areas in smart cities which
can be leveraged for smart network planning. Our framework
achieves this with a minimal dataset, accurately captures
the scene’s radio environment, and is not affected by the
challenges associated with both ML-based and non-ML-based
jamming techniques. As shown in Fig. 1, awareness of
jamming-prone areas can significantly enhance communica-
tion performance by enabling proactive strategies to manage
or avoid interference. Fig. 1 (b) illustrates that, by identifying
regions prone to jamming, the mobile receiver can strate-
gically navigate toward areas with reduced susceptibility to
jamming. Although another jammer may exist in these less
jamming-prone areas, its impact differs due to the structural
characteristics of the city, thereby enabling sustained commu-
nication. Our overall contributions are:

C1. We propose a methodology for accurately identifying
jamming-prone areas in smart cities using downtown Dallas
and downtown Houston as example scenes. This is achieved
by leveraging Blender, Blender OSM and NVIDIA’s Sionna
tools.

C2. We demonstrate the feasibility of using smaller datasets
(< 0.5M B) comprising 3D scenes from the example sce-
narios [13] and propagation modeling to accurately identify
jamming-prone areas in smart cities.

C3. We validate our framework through comprehensive
analysis and experiments on example scenarios. We release
our codebase and dataset for broader community use in [14],
facilitating reproducibility and further research exploration.

II. RELATED WORKS AND MOTIVATION

We underscore existing jamming identification and detec-
tion techniques, primarily focusing on both ML-based and
non-ML-based approaches. While ML methods leverage al-
gorithms, such as supervised and unsupervised learning, non-
ML methods rely on parameters and heuristics, including
thresholds, fuzzy logic, game theory, channel surfing, mapping
jammed region, and timing channels. Yang et al. [15] propose
a time series model that monitors the state of the link over
time and compares it with historical link data to assess the
state of the communication link. Cheng ef al. [16] introduce
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Fig. 2. The proposed framework.

a model based on thresholds, which assesses wireless chan-
nel performance in time-sensitive applications by analyzing
packet loss, throughput, and the message error ratio. Oscar et
al. [3] introduce a jamming identification method for 802.11
networks that relies on metrics available through standard
device drivers and employs random forests for detection.
This approach not only supports independent operation but
also facilitates collaborative detection. Similarly, Grover et
al. [17] present a ML-based system for jamming detection
that employs support vector machines, adaptive boosting, and
expectation maximization algorithms. The framework identi-
fies and detects jamming attacks by analyzing factors such as
noise, busy channel ratio, packet delivery ratio, and maximum
idle time.

Motivation: The state-of-the-art on jamming identification
and detection typically rely on training large datasets con-
taining features such as SNR, RSSI, and spectral patterns.
However, these approaches are vulnerable to security risks
and prone to accuracy issues, including false positives and
false negatives, which undermine their reliability in real-world
scenarios. Driven by this motivation, we propose a system
that reliably and accurately identifies jamming-prone areas
in smart cities using a minimal dataset, leveraging the open-
source Sionna RT tool. Our approach integrates environmental
features, device interactions, and real-world physical struc-
tures, offering significant potential for optimizing the planning
and management of wireless network deployments.

ITII. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem Formulation

We consider a legitimate transmitter TX transmitting with o
dBm transmit power in a city C. Each unobstructed point of
the city C is denoted as a cell (¢;,c;) with ¢ and j indexing
the X and Y coordinates of the city C. A mobile receiver
RX is modeled to be anywhere in the city, hence denoted as
RX(¢;,c;)- The jammer, denoted as JM, is jamming the legiti-
mate transmission of TX by transmitting at the same frequency
band as TX with 8 dBm transmit power. The resulting signal-
to-interference-plus-noise ratio (SINR) for each cell of the city
is denoted as SIN R(c, ¢;)- Overall, we want to mark each of
the cells of the city as:

Jampighn SINR(c; c;) > T
Otherwise

o) = 1
(ciyej) Jamy oy (D

Where 7 is a threshold at which the signal from the legit-
imate transmitter TX is undecodable at the receiver RX(c, ;)

due to high interference from the jammer JM.
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B. System Architecture
Our framework is illustrated in Fig. 2 and is organized into
three main modules as follows:

« Digital Twin Creation (Module 1): We create a virtual
replica of each real-world scene by directly extracting
its features and strategically positioning RF devices at
various locations within each scene (details in Sec. IV-A).

o Propagation Modeling (Module 2): We establish legit-
imate communication by placing a transmitter at a fixed
location and a receiver at other locations within each
scene, then propagating a signal between them (details
in Sec. IV-B).

o Jamming-prone Area Identification (Module 3): We
place a jammer at various location to interfere with the
legitimate communication. We analyze the impact of the
interfering signal at the receiver’s locations (details in
Sec. IV-C).

IV. FRAMEWORK

In this section, we discuss different steps and components
of our proposed framework.

A. Module 1: Digital Twin Creation

In the framework, we consider factors such as map accuracy
and RF propagation characteristics. Additionally, our model is
designed to be adaptable to various environmental configura-
tions in the future. The twin of the city C initialized as & =
f(map, O, p). Here, map represents the imported Blender [18]
map, O refers to the existing structures or objects within the
twin &, and p indicates the number of reflections accounted
for in the created twin.

B. Module 2: Propagation Modeling

We utilize the off-the-shelf Sionna RT [19] tool to simulate
the propagation characteristics of the created digital twin &
through RT. For a specified transmitter TX, the propagation
map is modeled as a rectangular surface with an arbitrary
orientation, divided into rectangular cells. The overall prop-
agation map of the created twin &¢ is generated by placing
the receiver RX at each cell (¢;, ¢;) and running differential
raytracing of Sionna RT [19].

C. Module 3: Jamming-prone Area Identification

Upon generation of the propagation map of the digital twin
&c, we simulate unauthorized communication across various
regions of the &£c. This is achieved by placing jammer JM
at different locations. In the digital twin &, for every ray
n that intersects a cell (¢;,c;) of the propagation map, the
corresponding SINR is calculated as:

power(TX, R'X(Ci»cj))
&) = pOMeT(JM’Rx(Cij)) +N

SINR.,

where power(TX,RX(c, c,)) is the power of the transmis-
sion going on between the legitimate transmitter TX and the
receiver RX at cell (c;, ), power(IM,RX(, .,)) represents the
power of the signal coming from the jammer JM at the receiver
RX at cell (¢;,¢;), and N is the noise at cell (¢;,c;). The

(a) Dallas: Real World
25 7 %',’m \:M: N

3
b X o 8

(¢) Houston: Real World

(d) Houston: Digital Twin

Fig. 3. The scene map and digital twin of our scenarios.

jamming-prone cells within the digital twin & of city C are
identified by following Equation 1.

V. EXPERIMENTS

A. Experimental Dataset

We use real-world 3D maps generated in [13] with Blender
OpenStreetMap (OSM) for our outdoor experiments. These
maps represent high-fidelity and hyper-realistic replicas of
downtown Dallas and downtown Houston. The downtown
Dallas scene covers an area of 0.4 x 0.5 km?, comprising 37
buildings, 10 parking lots, and numerous roads that replicate
the real world. Similarly, the downtown Houston scene covers
an area of 0.8 x 0.8 km?, containing 58 buildings, 29 parking
lots, and various roads to accurately capture the physical prop-
erties of the environment, as shown in Fig. 3. Sionna provides
a collection of materials defined by the International Telecom-
munication Union (ITU), each associated with specific radio
properties [9], ensuring both realism and compatibility for
every object. Each object in the scenes is represented based on
its material properties, categorized as ITU-marble, ITU-glass,
ITU-concrete, or ITU-brick, using the Blender tool. Note that
we only use the generated Blender OSMs of [13] and add
material properties to them using Blender.

B. Experimental Settings

In each scenario, we have two transmitters: a legitimate TX
and a jammer, along with one RX. The legitimate TX is placed
at a fixed position, while the jammer is positioned at four
distinct locations to analyze how each affects connectivity in
different parts of the city. The RX is modeled as a car moving
throughout the city. Each jammer is equipped with a dipole
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Table I: Simulation Parameters

[ Parameter [[  Setting/Value |
Dallas Area Dimension 0.4 x 0.5 km?
Houston Area Dimension 0.8 x 0.8 km?
Carrier Frequency 2.4 GHz
Antennas Dipole
Regular TX Power 44 dBm
Jammer TX Power 44 dBm
Dallas TX Position [—42,—270, 18]
Dallas JM1 Position [—27,70,18]
Dallas JM2 Position [73,—249, 18]
Dallas JM3 Position [107,—170, 18]
Dallas JM4 Position [—247,-172,18]
Houston TX Position [—116,131, 18]
Houston JM1 Position [—74,19,18]
Houston JM2 Position [—103,—245,18]
Houston JM3 Position [222, 48, 18]
Houston JM4 Position [100, 246, 18]
Material Properties ITU-R P.2040 — 2
Number of Rays 1M
Rays Maximum Depth (p) 5
Reflection Enabled
Diffraction Enabled
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Fig. 4. Propagation map of the legitimate transmission without any
jammer. No signal interference is present. Yellow regions indicate
areas with strong signal strength, and the black ’+’ marks the
transmitter’s position.

antenna array and transmits at 2.4 GHz with a power output
of 44 dBm, identical to the legitimate TX. The configuration
of each jammer remains consistent across all experiments.

C. Experimental Platform and Performance Metrics

We perform all experiments including scene creation and
propagation modeling on an Intel® Xeon® w7-2495x pro-
cessor, using Blender, TensorFlow, Python, Sionna RT and
Matplotlib libraries. We use the SINR to analyze communi-
cation between a legitimate transmitter-receiver (TX-RX) pair,
both in the absence of a jammer and with a jammer present
at various locations in different scenarios.

D. Performance Validation

Depending on the jammer’s location in each scenario, we
observe its impact on communication through performance
metrics such as SINR. To analyze the SINR, we utilize the
cumulative distribution function (CDF).
e Downtown Dallas. In the Dallas scenario, we begin by
positioning a legitimate TX, aimed at a receiver navigating at
that region, without introducing a jammer. We then compute
the SINR for the legitimate transmitter, labeled as TX. As
illustrated in Fig. 4 (a), the area exhibits strong signal strength
(yellow region) with minimal interference affecting the signal
quality. Next, we position a jammer at distinct locations in the
city, targeting both the receiver and the TX. For each jammer

SINR for TX SINR for TX

-
w0
M

"
L &
»

*1x

®

00 120

ise ratio (SINR) [dB]

Cell index (Y-axis)

8
Signal-to-interference-plus-noise ratio (SINR) [d8]

Signal-to-interferency

40 60 80
Cell index (x-axis)

Jammer 2

(b) Dallas: Jammer 2 (JM2 )

SINR for TX

Jammer1

(a) Dallas: Jammer 1 (JM1 )

SINR for TX

Cell index (v-axis)
Lol

L °
Signal-to-interference-plus-noise ratio (SINR) [dB]

0o 20 4 60 80
Cell index (x-axis)

Jammer 3

100 120

Jammer 4

(c¢) Dallas: Jammer 3 (JM3 ) (d) Dallas: Jammer 4 (JM4 )

Fig. 5. Dallas scenario with four jammers positioned at different
locations: Signal interference is evident, with the dark regions
outlined in red representing the jamming-prone areas caused by the
jammer. The red '+’ indicates the jammer’s position.

position, we calculate the SINR of the TX in the jammer’s
presence and analyze the resulting signal degradation.

As shown in Fig. 5, signal interference is evident in
comparison to Fig. 4 (a) in all instances where a jammer is
present and the SINR is computed for the legitimate TX. The
jammer’s impact on the city area is highlighted by red shapes,
with the red ‘+’ indicating the jammer’s position. In Fig. 5
(a), the jammer has minimal impact on signal interference
compared to other scenarios. The SINR remains high, as
indicated by the yellow region. In Fig. 5 (b), the yellow region
is smaller, with a larger green area indicating signal weakness
compared to Fig. 5 (a), due to jammer interference, as reflected
in the computed SINR for the legitimate TX. In Fig. 5 (c) and
Fig. 5 (d), it is evident that the jammer’s impact on the signal
between the TX-RX pair in each area is substantial, leading to
a smaller yellow region and larger dark regions.

Observation 1. The placement of the jammers, JM3 and JM4,
has more impact on the legitimate transmission of transmitter
TX than JM1 and JM2 (see Fig. 5 (c) and (d)).

Next, we analyze the SINR of the legitimate TX using
the CDF. We compare scenarios without a jammer to those
where a jammer is positioned at different locations within
the city. Fig. 6 (a) shows that in the absence of a jammer,
SINR is affected only by background noise and interference
from other sources, leading to a broader range of values.
At —40 dB, approximately 70% of SINR values are below
this level. As SINR increases, the cumulative probability
rises steadily, reaching nearly 1.0 around 100 dB, indicating
that most SINR values fall below the threshold. The steep
rise in the curve, particularly between 20-60 dB, reflects
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Fig. 6. CDF of SINR without any jammer.

a concentration of SINR measurements in this range. Also,
Fig. 7 presents the CDF curves of the SINR for the legitimate
TX in the presence of jammers located at various positions
within the city. In Fig. 7 (a), the SINR begins at approximately
—40 dB, indicating moderate levels of interference. The curve
rises steeply shortly afterward, showing that the majority of
SINR values are concentrated toward higher levels, which
suggests better overall signal quality. Additionally, the sharp
increase indicates that JM1 has a minimal disruptive impact,
allowing many transmissions to achieve acceptable SINR
levels. In Fig. 7 (b), the SINR starts at approximately —60 dB,
indicating slightly higher interference levels compared to
JM1. The curve’s gradual slope reflects greater variability in
SINR values. These values are spread across a wider range,
from around —60 dB to +80 dB. Overall, JM2 causes more
significant signal degradation than JM1 due to its broader
SINR range and slower rise. In Fig. 7 (c), the SINR starts
at an extremely low value of —80 dB, signifying substantial
interference. The slow rise of the curve in the lower SINR
range highlights a high occurrence of very poor SINR levels.
This indicates that JM3 is highly disruptive. In Fig. 7 (d),
similar to JM3, the SINR values ranges from —80 dB to +80
dB, indicating a severe interference environment for JM4.

Observation 2. The placement of JM3 and JM4 has signifi-
cantly higher probability of interfering the legitimate trans-
mission than JM1 and JM2 (see Fig. 7 (c) and (d)).

e Downtown Houston. Similarly, in the Houston scenario,
we begin by positioning a legitimate TX near the center of
the scene and establishing TX-RX communication without any
jammers. We then calculate the SINR for the scene. As
shown in Fig. 4 (b), the majority of the city exhibits good
signal coverage, represented by the yellow regions, with minor
scattered interference from other sources depicted as green
regions. The white areas represent the city structures. Next, we
position jammers at four distinct locations across the city and
compute the SINR of the TX in the presence of each jammer.
We then analyze the individual impact of each jammer on
signal degradation and assess their effect on coverage areas
within the city. Fig. 8 illustrates the impact of each jammer
at different locations within the city, with the affected areas
marked by red bounding shapes. In Fig. 8 (a), the jammer
has a moderate effect on the overall signal within the area. In
Fig. 8 (b), the jammer somewhat degrades the signal quality,
particularly in the area it occupies, resulting in a large dark
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Fig. 7. CDFs for all jammer locations in Dallas scenario.

region. In Fig. 8 (c), the jammer causes minimal interference,
and the overall SINR remains strong. In Fig. 8 (d), scattered
interference is observed across the city when the jammer is
positioned in that location.

Observation 3. The placement of the jammer JM4 has more
impact on the legitimate transmission of transmitter TX than
the JM1,2,and 3 (see Fig. 8 (d)).

Similar to the Dallas scenario, we next analyze the SINR
of the TX using the CDF in the Houston scenario, both
without a jammer and with a jammer placed at different
locations throughout the city, as shown in Fig. 6 (b) and
Fig. 9. In Fig. 6 (b), the cumulative probability starts at
approximately 0.75 around 0 dB, indicating that 75% of the
SINR values fall below this threshold. As the SINR increases,
the curve rises steadily, reflecting the distribution of SINR
values and suggesting a gradual improvement in signal quality.
In Fig. 9 (a), the SINR values range from approximately
—60 dB to +80 dB, indicating a moderate level of interference
and a diverse range of signal quality. While JM1 introduces
noticeable interference, the upward trend in the curve shows
that many transmissions still achieve acceptable SINR levels.
In (b), the SINR starts at approximately —40 dB, indicating
less interference compared to JM1. It spans from about —40 dB
to 80 dB, reflecting better overall signal quality. Overall,
JM2 is less disruptive. In (c), JM3 is the least disruptive,
with the SINR starting at —20 dB. The sharp rise in the
curve shows that most SINR values are concentrated at higher
levels. In (d), the SINR starts at —75 dB, indicating severe
interference. The curve rises slowly initially, highlighting a
high occurrence of poor SINR values before improving. JM4
is the most disruptive, causing widespread interference and
frequent instances of low SINR.

Observation 4. The placement of the jammer JM4 has signifi-
cantly higher probability of interference than the JM1, 2, and 3
(see Fig. 9 (d)).
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Fig. 8. Houston scenario with a jammer placed at various locations:
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regions indicating the jamming-prone areas caused by the jammer.
The red ’+ denotes the jammer’s position.
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Fig. 9. CDFs for all jammer locations in Houston scenario.

Overall, the proposed framework identifies jamming-prone
areas and evaluates the impact levels caused by jammers
placed at distinct positions within both cities.

VI. CONCLUSIONS

This paper introduces an innovative system for identifying
jamming-prone areas in smart cities using DT technology. Our
methodology involves creating a digital twin of real-world
environments, simulating propagation characteristics to gener-
ate RF maps, calculating the SINR of legitimate transmitter-
receiver pairs, and analyzing their SINR using CDF. Extensive

experimental validation in two outdoor scenarios demonstrates
the system’s effectiveness in identifying jamming-prone areas
and assessing their severity. Future work will investigate the
number of jammers required to disrupt an entire network’s
communication within an environment and explore strategies
to mitigate such attacks.
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