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Abstract—In today’s rapidly evolving technological landscape,
accurate object characterization is crucial for a wide range of
applications, from autonomous systems to smart environments
and security. Simultaneously, the growing concern for privacy
necessitates innovative approaches that can characterize objects
without compromising sensitive visual information. In this paper,
we introduce a novel approach for object characterization using
Radio Frequency (RF) propagation map generation through
ray-tracing within a Digital Twin (DT) framework. We outline
a systematic pipeline for leveraging NVIDIA’s Sionna Ray-
Tracing tool to generate DT propagation maps created in
Blender for indoor environments. Using these propagation maps,
we propose a machine learning-based approach to facilitate
object characterization. Our results demonstrate the feasibility
of object characterization through strategic scene configuration
using a small dataset that leverages RF maps within DTs.
This paper provides valuable insights into the potential of our
framework as a reliable and more efficient method for object
characterization, offering a promising alternative to traditional
vision-based techniques in scenarios where privacy concerns or
environmental constraints limit the use of conventional imaging
methods.

Index Terms—Digital twin, RF propagation, Ray-tracing, Ob-
ject characterization.

I. INTRODUCTION

Accurate localization of objects within an environment is

essential in fields such as robotics and automation, augmented

and virtual reality, smart homes and IoT, security and surveil-

lance, healthcare, transportation, industrial manufacturing,

agriculture, and environmental monitoring. This is crucial as

it enables systems to precisely identify the position of objects,

leading to enhanced efficiency, safety, and responsiveness.

To achieve a comprehensive understanding of these objects,

we must focus not only on determining their locations but

also on accurately characterizing their diverse properties. This

process is referred to as object characterization [1]. Also, as

one of the fundamental problems in computer vision, object

characterization provides valuable insights for the semantic

understanding of images and is connected to numerous ap-

plications, including image classification [2], human behavior

analysis [3], face recognition [4], and autonomous driving [5].

Camera Image-based Object Characterization. Machine

learning (ML) has emerged as a powerful tool for precise,

image-based object localization and characterization, signifi-

cantly enhancing the capabilities of computer vision systems.

By leveraging large camera image datasets and sophisticated

algorithms such as convolutional neural networks (CNN),

region-based CNN (R-CNN), Faster R-CNN [6], and you

Fig. 1. Comparison of camera image-based and RF-Vision-based
object characterization. We show that RF-Vision is privacy preserving
and more efficient. It is shown that RF-Vision is able to detect 3 wood
tables in the room while the camera image based approach is only
able to detect 2 of them due to non line of sight regions.

only look once (YOLO) [7], [8], [9], these systems can

continuously learn from examples. Overtime, this improves

their accuracy, making them particularly effective in dynamic

and complex environments. In addition, the advancements

in GPUs and computing technology have greatly accelerated

the processing and computation of large datasets for object

characterization tasks [10]. This enhanced processing power

enables more complex models to be trained and deployed

quickly, allowing real-time analysis and improved perfor-

mance in applications such as autonomous systems and image

recognition.

Concerns with Image-based Object Characterization.
Camera image-based datasets for object characterization

present several challenges. Training ML models requires

extensive, labeled datasets, which can be resource-intensive

and vulnerable to security risks and adversarial attacks [11].

Furthermore, camera images often divulge private informa-

tion, raising significant privacy concerns. Additionally, image-

based methods are limited in capturing objects in non-line-of-

sight (NLoS) conditions. These limitations necessitate alter-

native approaches for robust, privacy-preserving, and compre-

hensive object characterization.

Digital Twin (DT)-based Object Characterization. In re-

sponse to previous challenges, researchers are now exploring

the use of DTs to enhance object localization within virtual en-

vironments [12], [13]. Standardization bodies such as the 3rd

Generation Partnership Project (3GPP) and the International

Telecommunication Union Telecommunication Standardiza-
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tion Sector (ITU-T) have recognized the importance of DTs

[14]. Furthermore, DT technology and RF propagation have

proven to be effective techniques for selectively capturing

and analyzing visual and spatial data from the surrounding

environment, enabling enhanced privacy preservation [15].

Novel Contributions. Building upon these advancements in

DT technology, we propose RF-Vision, an innovative frame-

work that combines RF propagation and ML within a DT

to locate and characterize objects in a scene. RF-Vision ac-

complishes this with minimal training data, preserves privacy,

and performs effectively in detecting line of sight (LoS)

objects as well as capturing overall scene details. As shown

in Fig. 1, RF-Vision equips the scene with RF devices that

enable ray-tracing to localize objects in real-time and generate

maps for object characterization. This novel application of

RF propagation for object characterization involves three key

steps: (a) creating a DT to simulate real-world scenarios, (b)

generating an RF propagation model within this DT, and (c)

developing an ML approach that leverages the propagation

characteristics of the DT to characterize objects. Specifically,

various advantages of RF-Vision includes: (a) privacy preser-

vation, (b) characterize objects in LoS regions and capture

overall scene details, and (c) training on smaller dataset, as

focused in Fig. 1. Formally, this paper’s contributions are:

1. We propose a high-fidelity DT creation method that accu-

rately models indoor environments by extracting real-world

features with open-source Blender tool.

2. Privacy preservation through ray-tracing. We propose a

methodology for precisely configuring scenes and generating

propagation characteristics with transmitters placed at various

positions within the environment. This approach utilizes ray-

tracing (RT) on the DT of each scene, leveraging NVIDIA’s

Sionna RT-based software to accurately localize objects and

create coverage maps for each transmitter position across all

scenes.

3. Overall scene coverage. We propose an ML model that

uses RT-generated coverage maps to accurately characterize

LoS objects and capture overall scene details. This model

effectively learns the feature characteristics of objects and the

contextual information derived from these coverage maps to

enable precise detection.

4. Smaller Dataset. We present a 10MB dataset of first-of-

its-kind (to the best of our knowledge) RT-based DT indoor

scenarios for object characterization. The detailed process of

generating this dataset is thoroughly documented in this paper.

We release our codebase and generated dataset for broader

community use in [16], facilitating reproducibility and further

research exploration.

II. RELATED WORKS AND MOTIVATION

Generic object detection involves locating and classifying

objects within an image, marking them with rectangular

bounding boxes to indicate confidence levels for each de-

tection. The detection frameworks are typically divided into

two main categories: region-based methods and classification-

Fig. 2. The overall framework and working principle of RF-Vision.

or regression-based methods. Girshick et al. [17] apply high-

capacity CNNs to bottom-up region proposals to localize and

segment objects. They use a simple bounding-box regression

stage to improve localization performance, utilizing a training

dataset of 395, 918 samples. Zhang et al. [18] present an

enhanced Faster R-CNN model to detect healthy tomato leaves

and identify four common diseases. Their approach utilizes

the k-means algorithm to cluster bounding boxes, applied to

a dataset of 4, 178 images, achieving a 2.71% improvement in

recognition accuracy over the original Faster R-CNN model.

Similarly, Feroz et al. [19] employ single-shot detector (SSD)

and YOLO models, trained using a common objects in context

(COCO) dataset containing 330, 000 images, to improve real-

time object detection and recognition from webcam video,

achieving an accuracy range of approximately 63− 90%. Qin

et al. [20] introduce an integrated framework that improves

outcomes by leveraging synergistic information from multiple

jointly trained CNNs, using a dataset of 53, 000 samples

collected from online social networks.

Motivation for designing RF-Vision: All the cited work on

object localization and characterization relies solely on image

dataset and ML models that require large training samples,

which are susceptible to security risks and adversarial attacks.

Furthermore, these datasets are captured using cameras that

cannot detect NLoS objects within a scene. In this paper,

we propose an innovative framework, RF-Vision, for object

characterization, which is designed to preserve privacy and

function effectively with small sample sizes by combining RF

ray-tracing with ML within a DT environment.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem Formulation

We denote the input scenario as S with O objects. The

object characterization function fo is defined as: fo : S →
{(bi, ci, si)}Ni=1, where N is the number of detected objects in

the scenario S (this number can be different that actual number

of objects present, i.e., O), bi represents the bounding box for

the ith object, ci is the class label for the ith object, and si is

the confidence score for the ith object. Each bounding box bi
is represented as: bi = (xi, yi, wi, hi), where: (xi, yi) are the

coordinates of the top-left corner of the box, wi is the width

of the box, hi is the height of the box. The class label ci is an

integer representing the object category: ci ∈ {1, 2, ...,K} ,

where K is the total number of object classes. The confidence

score si is a real number between 0 and 1: si ∈ [0, 1].

B. System Architecture in RF-Vision

Our framework is illustrated in Fig. 2 and is organized into

three main modules as follows:

2025 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

5647
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 01,2025 at 19:06:24 UTC from IEEE Xplore.  Restrictions apply. 



• Digital Twin (DT) Creation (Module 1): We create
a digital replica of each real-world scene by directly
extracting its features and place RF devices at various
locations within these scenes (details in Sec. IV-A).

• Propagation Modeling (Module 2): We strategically
place a transmitter in the ceiling area and a receiver at
the center of each scene. We then propagate a signal
to localize the objects within these scenes (details in
Sec. IV-B).

• ML-based Object Characterization (Module 3): We
implement an ML model that leverages propagation
characteristics and scene maps to characterize objects in
each scene (details in Sec. IV-C).

IV. RF-VISION FRAMEWORK

In this section, we discuss different steps and components
of our proposed framework.

A. Module 1: Digital Twin (DT) Creation

In the RF-Vision, we take into account aspects related to
map accuracy and characteristics of RF propagation. While
incorporating several specific key metrics into RF-Vision, our
baseline can be adapted in the future to accommodate different
environmental configurations. We initialize the created DT as
E = f(S, ρ) = f(map,O, ρ). Here, map, O, and ρ denote the
imported Blender [21] map, present structures or objects for
the twin E , and number of allowed reflections for the created
twin, respectively.

B. Module 2: Propagation Modeling

We use the open source Sionna RT [15] tool to generate the
propagation characteristics of the created DT E by employing
RF ray-tracing. For a given transmitter TX, a propagation map
is a rectangular surface with arbitrary orientation subdivided
into rectangular cells of size |C|. A parameter η controls the
granularity of the map. The propagation map associates with
every cell (Ci, Cj). The channel gain Gi,j for each cell of DT
E is denoted as:

Gi,j =
1

|C|

∫
(Ci,Cj)

|h(x, y)|2dx.dy,

where h(s) is the amplitude of the path coefficients at position
(x, y) within (Ci, Cj) [22].

C. Module 3: ML-based Object Characterization

After completing propagation modeling for all digitally
created scenes and generating the corresponding propagation
maps, we use ML-based object localization and character-
ization in RF-Vision. The object characterization problem
fθ is solved by training a parameterized ML model fθ,
where fθ : R|C| → R6, where |C| represents the domain
of the scenario S generated by propagation modeling and
6 represents the generated values corresponding to bounding
box (4 values), class label (1 value), and confidence score (1
value), details in Sec. III-A.

For training fθ we use a multi-task loss function L that
combines multiple components: L = λ1Lbox+λ2Ldfl+λ3Lcls,

where Lbox is the localization loss for bounding box regres-
sion, Ldfl is distribution focal loss for imbalanced class predic-
tion, Lcls is the classification loss for class prediction, λ1, λ2,
and λ3 are weighting factors [23]. The ML model fθ is trained
over multiple epochs to minimize the multi-task loss, formally,
θ̂ = argminθ L(fθ(I), Y ), where θ represents the parameters
of the ML model, L is a loss function, Y represents the
ground truth bounding box annotations. Overall, we generate
the object characterization function as fo(.) = fθ̂(.).

During inference, for a new scenarios Snew, the bounding
boxes are predicted as: (b̂new, ĉnew, ŝnew = fθ̂(Snew), where
b̂new, ĉnew, ŝnew are the new predicted bounding box, class label
and confidence scores, respectively.

V. EXPERIMENTS

A. Dataset Generation

To validate our experiments we curate a dataset featur-
ing realistic digital twins (DTs) and their corresponding RF
propagation maps of indoor scenarios with objects of various
shapes and four materials. We meticulously design the DT
scenes using Blender [21] and generate the corresponding
propagation characteristics and maps with Sionna RT [15].
Overall, we generate 324 RF propagation maps from 36 scene
configurations featuring 2 distinct floor plans and 9 different
transmitter positions. For each configuration, the transmitter is
placed 13 ft above the floor, i.e., at the ceiling of the room: (a)
Position 1: top-left, (b) Position 2: top-middle, (c)
Position 3: top-right, (d) Position 4: middle-right,
(e) Position 5: bottom-right, (f) Position 6: bottom-
middle, (g) Position 7: bottom-left, (h) Position 8:
bottom-middle, and (i) Position 9: center, as marked in
Fig. 3(a) and Fig. 4(a). Moreover, each configuration has
four different material properties: wood, metal, glass, and
concrete to represent a table object in the scene. We model
these four materials as: ITU-wood, ITU-metal, ITU-glass,
and ITU-concrete radio materials, respectively, in Sionna RT.
Each configuration also features a unique table shape, with
object positions rearranged in each subsequent setup. For
example, if one configuration has tables arranged from top-left
corner clockwise as wood, metal, glass, and concrete, the next
configuration of the same table shape will rearrange them as
metal, glass, concrete, and wood, and so forth. We generate a
propagation map for each configuration.

1) Digital Twin (DT) Creation: We use Blender to create a
DT of all scene configurations, digitally replicating real-world
settings, including scene objects with various radio material
properties, as well as the walls and ground plane of each
scene. After carefully creating the scenes, we export each
one from Blender in Mitsuba 3 .xml file format, which
handles scene rendering, and import it into Sionna RT for
propagation modeling. The details of DT creation is presented
in our previous work [24], [25]. Snapshots of selected scene
configurations of generated DTs are presented in the first
columns of Figs. 3 and 4.
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Pos. 1 Pos. 2 Pos. 3

Pos. 4

Pos. 5Pos. 6Pos. 7

Pos. 8 Pos. 9

(a) Conf. 1 (b) Conf. 1 PM (Pos. 9)

(c) Conf. 2 (d) Conf. 2 PM (Pos. 2)

(e) Conf. 3 (f) Conf. 3 PM (Pos. 1)

(g) Conf. 4 (h) Conf. 4 PM (Pos. 4)

Fig. 3. A snapshot of selected scenes and their propagation maps
is shown, where the first column displays the digitally created
scenes and the second column shows their corresponding propagation
maps (PM). Objects in the propagation maps are marked to indicate
localization following propagation modeling. The red cross on the
PMs indicates different transmitter positions.

2) Propagation Modeling: Following the creation of the

DT of each scene and its import into Sionna RT [15], the

transmitter and receiver antennas are configured as 8 × 2
tr38901 [26] with dual polarization and 1 × 1 diapole
planner array, respectively. The transmitter in the scene op-

erates at 2.4 GHz with power of 44 dBm. Using the com-

pute path function in Sionna, we calculate compute paths to

generate the propagation map, setting max-depth = 5 and

num-samples = 5000. Snapshots of the corresponding

propagation maps with different transmitter positions are

presented in the second columns of Figs. 3 and 4.

Remark 1. The generated propagation maps capture various
object properties within a scene while preserving privacy by
omitting detailed visual information from camera images (see
Figs. 3 and 4, validates Contribution 2)

Generated Dataset. By combining various configurations

and positions, we generate 324 propagation maps for indoor

scenarios involving four distinct materials: (a) wood, (b)

metal, (c) glass, and (d) concrete, resulting in a compact

dataset of only 10 MB (validates Contribution 4).

B. YOLO-based Object Characterization

Machine Learning (ML) Model. In recent years, com-

plex ML models such as YOLO [7], [8] and R-CNN [6]

have gained significant popularity for object detection and

(a) Conf. 5 (b) Conf. 5 PM (Pos. 3) (c) Conf. 6

(d) Conf. 6 PM (Pos. 8) (e) Conf. 7 (f) Conf. 7 PM (Pos. 5)

(g) Conf. 8 (h) Conf. 8 PM (Pos. 6)

(i) Conf. 9 (j) Conf. 9 PM (Pos. 7)

Fig. 4. Selected scene configurations and their propagation maps
are shown. Various transmitter’s positions are shown in (a). In the
second column, green-marked regions indicate weak signal strength
due to the presence of an object, while yellow regions represent
strong signal intensity where no object is present.

characterization in vision datasets. In RF-Vision, we lever-

age these state-of-the-art methods to effectively characterize

various objects from propagation maps. In Figs. 3 and 4,

we observe that due to the privacy-preserving nature of the

data, the objects lack distinct edges. Hence, through extensive

experimentation, we have selected a lightweight variant of the

widely recognized YOLO model, namely YOLO v11 nano or

YOLO v11n, as our candidate model [27] as small datasets

generally perform better with models with smaller number of

parameters and simpler architecture. We specifically fine-tune

YOLO v11n with the generated dataset, producing a version

with 238 fused layers, 2, 582, 932 parameters, 0 gradients, and

6.3 Giga Floating Point Operations per Second (GFLOPS).

Experimental Platform and Performance Metrics. We em-

ploy Ultralytics with PyTorch, providing a robust and versatile

platform. We run our experiments on google colab using an

NVIDIA A100 GPU. We use standard performance metrics,

including recall, precision, and mAP50, to evaluate the effec-

tiveness of object characterization, where mAP50 represents

the mean average precision calculated at an intersection over
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union threshold of 0.5.
Training Parameters. In our experiments, YOLO v11n model
is fine-tuned for object characterization with 100 epochs, an
early stopping patience of 100, batch size of 16, and 640×640
resolution for the propagation map images. We use stochastic
gradient descent optimizer, with an initial learning rate of
0.01, momentum of 0.937, and weight decay of 0.0005. Mixed
precision was enabled, using 8 workers, and a fixed seed
ensured reproducibility.
Data Augmentation. We also perform data augmentations
including horizontal flipping (fliplr=0.5), hue, saturation, and
value adjustments (hsvh = 0.015, hsvs = 0.7, hsvv = 0.4),
translation (0.1), scaling (0.5), and RandAugment [28], aiming
to increase the robustness of the model. The augmentation
process expanded the dataset by a factor of 2.27, resulting in
a final size of approximately 27 MB, which remains relatively
compact for computational efficiency.
Training. The augmented dataset is divided into training,
validation, and test sets with an 80/10/10 split. We design
a series of experiments, where we perform training based on
the data group with respect to different transmitter locations.
The details of various experiments are shown in Table I: top
(Position 2), right (Position 4), bottom (Position
6), left (Position 8), center (Position 9), and com-
bined. From the Table I, we observe 19.2%, 27.6%, 28.9%,
24.7%, and 89.0% for transmitter positions 2, 4, 6, 8,
and 9, respectively, on correctly detecting different mate-
rials. Based on our observations, RF-Vision demonstrates
competitive performance in detecting object materials when
the ray-tracing is conducted with a transmitter positioned
centrally within an indoor scenario, as the varied performance
across different transmitter locations leads to reduced overall
performance when trained on combined data. The training
plots with the transmitter in the center are shown in Fig. 5. The
training trend is shown through localization loss (box_loss
denoted as Lbox in Sec. IV-C), classification loss (cls_loss
denoted as Lcls in Sec. IV-C), and distribution focal loss
(dfl_loss denoted as Ldfl in Sec. IV-C). The performance
is captured through precision, recall, and AP50 metrics for
both training and validation.

Observation 1. We observe that RF-Vision yields competitive
training performance for object characterization when the
transmitter is placed in the center (Position 9) of a scene.

Transmitter Pos. Precision Recall mAP50 Inference Time
Top (Pos. 2) 19.2% 85.3% 62.2% 15.6 ms
Right (Pos. 4) 27.6% 94.5% 51.7% 11.2 ms
Bottom (Pos. 6) 28.9% 91.9% 42.7% 4.6 ms
Left (Pos. 8) 24.7% 80.8% 44.8% 6.2 ms
All (combined) 29.8% 83.5% 44.7% 2.8 ms
Center (Pos. 9) 89.0% 95.5% 98.5% 2.2 ms

Table I: Ablation study on datasets with distinctive transmitter
positions.

YOLO-based Inference. We show various samples of in-
ference while using the trained model in Fig 6. Overall, it

Fig. 5. Training and validation plots while trained on the dataset
containing transmitter in the middle (Pos. 9). The box_loss,
cls_loss and dfl_loss correspond to Lbox, Lcls, and Ldfl,
defined in Sec. IV-C. The performance is captured through precision,
recall, and AP50 metrics for both training and validation.

Fig. 6. Samples of inferences instances from the YOLO v11n
model, which was trained on propagation maps generated with the
transmitter positioned centrally (Pos. 9). The trained model is able
to detect the shapes and material properties of the objects with high
confidence.

achieves high confidence on predicting the objects shapes
and materials (wood, metal, glass, and concrete) from the RF
propagation maps.

Observation 2. We observe that the YOLO-based detection
is able to characterize objects when the transmitter is placed
at the center of a scene (see Fig. 6, validates Contribution 3).

• Comparison with State-of-the-art. We compare the in-
ference time per frame with the state-of-the-art [29], [30].
As shown in Table II, RF-Vision outperforms other methods
in inference time and uniquely utilizes privacy-preserving
propagation maps.
• Co-existence of RF-Vision with Existing Communi-
cation Infrastructure. In typical indoor environments, RF

2025 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

5650
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 01,2025 at 19:06:24 UTC from IEEE Xplore.  Restrictions apply. 



Table II: Comparison with state-of-the-art w.r.t. inference time.

Paper Model CPU/GPU Inference Exposed
Time Visual Info.

Wang et al. [29] YOLOv7 RTX 4090 5.4 ms Yes
Zhou [30] YOLO-NL Ryzen 7 5700X 10.4 ms Yes
RF-Vision YOLOv11n A100 2.2 ms No

transmitters such as WiFi access points operating in the
2.4 GHz frequency band (the same band utilized in our
experiments) are commonly installed on ceilings. This existing
infrastructure can be used to create DTs of the environment
and characterize objects within the scene. Ceiling-mounted
deployments offer several advantages: they provide an ele-
vated, bird’s-eye perspective of the environment, significantly
reducing the occurrence of NLoS conditions; the existing con-
figuration can be directly utilized without additional hardware
installation; and the diffraction properties inherent in RF ray-
tracing [15], further minimize NLoS occurrences for objects
within the scenario. This synergy between RF-Vision and
existing communication infrastructure not only enhances the
system’s ability to characterize objects but also offers a cost-
effective and non-intrusive solution for indoor environment
mapping and analysis, closely mirroring practical scenarios
and increasing the applicability of our findings.

VI. CONCLUSION

This paper presents RF-Vision, an innovative system that
combines RF propagation with ML for object characterization
in indoor environments. Our approach involves creating a DT
of real-world scenarios, simulating propagation characteristics
to generate RF maps, and using these maps to train a ML
model for object characterization. Through extensive exper-
imental validation, we demonstrate that RF-Vision achieves
accurate object characterization with minimal training data
generated from transmitters of relative center positions. Future
work will aim to extend this system by three aspects. First,
generate more high-quality data with relevant features to fur-
ther fine-tune the ML model for robustness and generalization
on indoor environments. Second, explore solid pipeline(s) in
outdoor settings to assess its adaptability. Lastly, evaluate
the privacy-preserving performance with specific quantitative
metrics.
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