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Abstract—A digital twin is a virtual representation of a
physical object, system, or process that is used to simulate,
predict, and optimize its performance in real-time. This digital
counterpart is created using data from sensors and other sources
to reflect the state and behavior of the physical counterpart. In
this demo paper, we introduce an innovative real-time object
localization system within a digital twin, designed to detect and
locate objects within an environment. We demonstrate our system
using a digital twin setup that leverages Blender tool and RF
propagation with NVIDIA’s Sionna RT. Our results illustrate that
real-time object localization can be effectively achieved through
our framework. This demo offers valuable insights into the
potential of our framework as a reliable and efficient method
for performing real-time object localization.

Index Terms—Digital Twin, RF propagation, Object localiza-
tion.

1. INTRODUCTION

Precise localization in an environment provides significant
benefits, boosting functionality and efficiency in fields such as
robotics and automation, augmented reality and virtual reality,
smart homes and Internet of Things, as well as security and
surveillance. The capability to accurately pinpoint the position
and orientation of objects is crucial for technological advance-
ment and enhancing the quality of numerous applications that
require detailed spatial awareness and control.
Machine learning (ML)-based objects localization. Such
precise object localization involves using machine learning-
based algorithms and models to identify and locate objects
within images or videos [1]. Also, the rapid advancement of
object localization techniques have been largely credited to
the development of deep convolutional neural networks and
the enhanced computing power of GPUs [1]. By training on
large datasets, these models learn to recognize patterns and
features that distinguish different objects.
Concerns with ML-based object localization. However,
training those ML models requires availability of relevant
data in large scale. For example, for a ML-based model to
detect and localize a ‘Table’ or a ‘Chair’, we need to have
access to thousands of labeled images which include those
objects [1]. This requirement makes the machine learning
based methods prone to security risk and adversarial attacks
where the attacker can manipulate the training data to degrade
the localization performance [2]. Additionally, the ML-based
object localization using images has limitations in capturing
objects that are within non-line-of-sight (NLOS).
Digital twin-based object localization: motivation and con-
tributions. Motivated by the previous challenges, the research
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Fig. 1. ML-based object localization vs. RF-based object localization.

community is now investigating the use of digital twins for
localizing objects within the digital space [3]. Essentially, a
digital twin serves as a dynamic digital counterpart to a real-
world scenario, bridging the gap between physical systems and
digital environments. In this paper we introduce a real-time
object localization framework which uses the RF propagation
modeling to detect objects within a digital twin. The proposed
approach does not require large training datasets and excels at
capturing NLOS scene objects through accurate configuration
and positioning of the scene’s radio devices. This technique
uses ray-tracing (RT) which simulates advanced lighting ef-
fects such as reflections, refractions, diffractions, and scatter-
ings with high fidelity and realism [4]. Our proposed approach
comes with an initial cost of setting up a digital twin of
the real world, or can be integrated to any existing digital
twin environment. The illustrative benefits of employing the
proposed RF propagation for object localization are shown in
Fig. 1. Overall, the paper contributions are as follows:

1. Designing digital twin scenarios and RF propagation models
using publicly available Blender [5] and NVIDIA’s Sionna
RT [4] tools.

2. Generating propagation characteristics through a systematic
methodology by utilizing ray-tracing within the digital twin.

3. Detecting and locating real-time objects using our indoor
lab setup as example scenes.

II. SYSTEM DESIGN AND IMPLEMENTATION

We design and implement this work on an Intel (R) Xeon
w7-2495%, Windows 10 system, the setup incorporates Blender
LTS v3.6.12 [5], and NVIDIA’s Sionna RT [4]. The overall
flow of system design is shown in Fig. 2.
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Fig. 2. The overall pipeline of the proposed design.

Digital twin creation. We use Blender tool to digitally repli-
cate two real-world lab indoor environments. We then assign
electromagnetic properties to all the objects in both scenes
to ensure accurate calculations and realism. These scenes
are subsequently exported to Sionna RT using the Mitsuba
(.xml) format. Note that Blender is exclusively used for
generating digital twins and does not play any role in object
localization. The process of creating digital twins is detailed
in our previous works [6], [7]. The digital twins of both scenes
are displayed alongside their real-world counterparts in Fig. 3.
Propagation modeling using Sionna RT. The created scenes
are imported into Sionna RT for propagation modeling. For
each scene, we include characteristics such as the transmitter
array, receiver array, camera, scene transmitter, and receiver.
To ensure precise propagation, each scene transmitter is placed
on the ceiling and the receiver is positioned on the floor.
The optimal configuration for both scenes after optimization
is max-depth = 5 and num-samples = 65.

Object localization. When signals are transmitted from the
transmitter and interact with objects in the environment, their
material properties (such as wood, metal, concrete, and brick)
cause signal interference, resulting in distinct shapes on the
map. These shapes, highlighted in green, indicate the presence
and characteristics of obstacles based on their interference
patterns. Additionally, the shapes provide insights into the
types of objects present in the environment. From the Fig. 3
(d) and (h), we observe 6 and 14 number of objects in Scenario
1 and 2, respectively. Out of 14 objects in the Scenario 2, 11
of them looks small square shaped, which matches with the
11 chairs present in the real-world scene. On the other hand,
we could only detect 7 objects out of 14 real-world objects
within the Scenario 1, due to the fact that the RF propagation
of the 8 small chairs got merged with the propagation of the
big center table. The coarse shapes of the detected objects in
digital twins resembles the shapes of the furniture present in
the real-world images.

III. DEMONSTRATION

For our demo, we will set up a laptop using Jupyter
Notebook as the integrated development environment (IDE)
with NVIDIA’s Sionna RT installed to carry out the prop-
agation characteristics of different environments. Attendees
will observe the importation of two distinct indoor scenes
from Blender into Sionna RT, along with the use of machine
learning libraries for visualization. We will demonstrate how to
load the scenes and perform ray-tracing for radio propagation
by configuring the antenna arrays for all transmitters and
receivers, and adding the respective transmitters and receivers
for these scenes. Then the carrier frequency for both scenes
will be set to 2.4 GHz. Next, we will compute and display

the propagation paths within these scenes. Lastly, we will
simulate coverage maps to illustrate how the signal interacts
with objects within the scenes. Attendees will have the oppor-
tunity to compare real-world scenes with their digital twin
counterparts, demonstrating real-time object localization by
clearly identifying the location and orientation of objects in
the digital twin scenes.
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Fig. 3. Illustration of the scenes created for object localization from
the real-world environment. In each scene, the transmitter is mounted
on the room’s ceiling, while the receiver is placed in an open space
on the ground. The red boxes in both created scenes accurately depict
the objects, highlighting their shapes, sizes, and positions.

IV. CONCLUSION

This demo paper presents an innovative system for real-
time object localization using RF propagation within an en-
vironment. Our approach involves creating a digital twin of
the physical space, performing propagation characteristics,
and identifying object locations and shapes within that space.
Through extensive experimental validation in two scenarios,
we demonstrate that our system can accurately determine
objects shapes and orientation without requiring training data.
Future research will focus on incorporating both real-world
and digital twin scenes to characterize other properties of an
object by fusing image-based machine learning and RT-based
RF propagation modeling.
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